▒­ū┼╝▒ŻĪ
Ž┬├µĖ°─Ńš¹└Ē═ß╣¹╚╩╚ń║╬╦ĄĄ─Ė„ųų╩²č¦Ę¹║┼║═▒ĻĄŃĘ¹║┼Ą─
ėó╬─▒Ē┤’Ż¼┐┤═Ļ║¾─Ń┬Ē╔ŽŠ═╗ß╦Ą┴╦ŻĪ

Mathematical symbols╩²č¦Ę¹║┼

01 +: plus ╝ė║┼Ż╗š²║┼
Ī░1+1Ī▒Č┴ū„Ż║one plus one
02ŻŁ: minus; negative ╝§║┼Ż╗Ė║║┼
Ī░2-1Ī▒Č┴ū„Ż║two minus one
Ī░-3Ī▒Č┴ū„Ż║minus three╗“negative three
Ī░2-(-3)Ī▒Č┴ū„Ż║two minus negative three
03Ī└: plus-minus sign š²Ė║║┼
Ī░Ī└1Ī▒ Č┴ū„Ż║plus or minus one
04Ī┴: multiplied by ; times │╦║┼
Ī░2Ī┴3Ī▒ Č┴ū„Ż║two multiplied by three ╗“ two times three
05Ī┬: divided by │²║┼
Ī░4Ī┬2Ī▒Č┴ū„Ż║four divided by two
06=: equals; is equal to Ą╚ė┌║┼
Ī░1+1=2Ī▒Č┴ū„Ż║One plus one equals two.╗“ One plus one is equal to two.
07Ī┘: is not equal to ▓╗Ą╚ė┌║┼
Ī░aĪ┘bĪ▒Č┴ū„Ż║a is not equal to b
08Īš: congruent to ╚½Ą╚Ż©┴ĮĖ÷═╝ą╬ą╬ū┤ŽÓ═¼Īó┤¾ąĪŽÓĄ╚Ż®
Ī░Ī„ABCĪšĪ„DEFĪ▒Č┴ū„Ż║Triangle ABC is congruent to Triangle DEF.
09Īų: approximately equal to į╝Ą╚ė┌║┼
Ī░3Ī┴3Īų10Ī▒ Č┴ū„Ż║Three multiplied by three is approximately equal to ten.
10<: is less than ąĪė┌║┼
Ī░1<2Ī▒Č┴ū„ One is less than two.
11>: is greater than ┤¾ė┌║┼
Ī░2>1Ī▒Č┴ū„Ż║Two is greater than one.
12Ī┌: is not less than ▓╗ąĪė┌║┼
Ī░3Ī┌2Ī▒Č┴ū„Ż║Three is not less than two.
13Ī█: is not greater than ▓╗┤¾ė┌║┼
Ī░2Ī█4Ī▒ Č┴ū„Ż║Two is not greater than four.
14Ī▄: is less than or equal to ąĪė┌╗“Ą╚ė┌║┼
Ī░2Ī▄3Ī▒Č┴ū„Ż║Two is less than or equal to three.
15Ī▌: is greater than or equal to ┤¾ė┌╗“Ą╚ė┌║┼
Ī░5Ī▌4Ī▒Č┴ū„Ż║Five is greater than or equal to four.
16%: percent ░┘Ęųų«ĪŁĪŁ
Ī░10%Ī▒Č┴ū„Ż║ten percent
17Īļ : per mill ; per thousand Ū¦Ęųų«ĪŁĪŁ
Ī░10ĪļĪ▒Č┴ū„Ż║tenperthousand

18Ī▐: infinity ╬▐Ž▐┤¾║┼
Ī░ŻŁĪ▐Ī▒ Č┴ū„Ż║negative infinity
19Īž: varies as ėļ...│╔▒╚└²
Ī░XĪžYĪ▒Č┴ū„Ż║X varies as Y
20Ī╠Ż■: square root ŲĮĘĮĖ∙
Ī░Ī╠Ż■16=4Ī▒Č┴ū„Ż║The square root of sixteen is four.
213Ī╠Ż■: cube root ┴óĘĮĖ∙
Ī░3Ī╠Ż■27=3Ī▒Č┴ū„Ż║The cube root of 27 is 3.
22Ī▀: since; because ę“╬¬
Ī░Ī▀1+1=2Ī▒Č┴ū„Ż║because one plus one equals two
23ĪÓ: hence; therefore ╦∙ęį
Ī░ĪÓ1<2Ī▒Č┴ū„Ż║hence one is less than two
24ĪŽ: angle ĮŪ
Ī░ĪŽAĪ▒Č┴ū„Ż║angle A
Ī░ĪŽA +ĪŽB+ĪŽC=180ĪŃĪ▒Č┴ū„Ż║Themeasureof angle A plus angle B plus angle C equals 180 degrees.
25Īą: semicircle ░ļį▓
Ī░ĪąABĪ▒Č┴ū„Ż║semicircle AB
26Īč: circle į▓
Ī░ĪčAĪ▒Č┴ū„Ż║circle A
27Ī­: circumference į▓ų▄
Ī░Ī­=”ąĪ┴dĪ▒Č┴ū„Ż║Pi multiplied by d equals circumference.
28”ą: pi constant į▓ų▄┬╩
Ī░”ąĪ┴dĪ▒Č┴ū„Ż║pi multiplied by d
29Ī„: triangle ╚²ĮŪą╬
Ī░Ī„ABCĪ▒Č┴ū„Ż║triangle ABC
What is the area of triangle ABC? Ū¾╚²ĮŪą╬ABCĄ─├µ╗²ĪŻ

30Ī═: perpendicular to ┤╣ų▒ė┌
Ī░AĪ═BĪ▒Č┴ū„Ż║A isperpendicular to B.
31//: parallel to ŲĮąąė┌
Line AB is parallel to line CD.
32Ī╚: union of ▓óŻ¼║Ž╝»
Ī░AĪ╚BĪ▒Č┴ū„Ż║theunionof A and B
33Ī╔: intersection of Į╗Ż¼═©╝»
Ī░AĪ╔BĪ▒Č┴ū„Ż║The intersection of A and B
34Īę: the integral of ĪŁĪŁĄ─╗²Ęų
Ī░ĪęxĪ▒Č┴ū„Ż║the integral of x
35ĪŲ: summation of ū▄║═
Ī░ĪŲxĪ▒Č┴ū„Ż║the summation of x
36equation ĘĮ│╠╩ĮĪóĄ╚╩Į
Ī░y = kxĪ▒ Č┴ū„Ż║Y varies as x.
K is "the constant of variation.yėļx│╔š²▒╚Ż©y╩ŪxĄ─š²▒╚║»╩²Ż®Ż¼k╩Ū│Ż╩²ĪŻ
Ī░y = k/xĪ▒Č┴ū„Ż║Y varies inversely as x.yėļx│╔Ę┤▒╚└²Ż©y╩ŪxĄ─Ę┤▒╚└²║»╩²Ż®ĪŻ
Punctuation marks▒ĻĄŃĘ¹║┼
ĪŃdegree Č╚

Īõminute Ęų
ĪÕsecond ├ļ
ĪµCelsius degree ╔Ń╩ŽČ╚
©H Fahrenheit degree ╗¬╩ŽČ╚
@at sign
[ ]square brackets ĘĮ└©║┼
Ż© Ż®parentheses ; brackets; round brackets └©║┼
) close parenthesis ėę└©║┼
.point/dot ĄŃ
|verticalbar; vertical virgule ╩·Ž▀
&ampersand; and; reference; ref ║═Ż¼ę²ė├
*asterisk, multiply, star, pointer ąŪ║┼Ż¼│╦║┼Ż¼ąŪŻ¼ųĖšļ
/slash; divide; oblique; stroke; solidus ą▒Ž▀Ż¼ą▒Ė▄Ż¼│²║┼
//slash-slash; comment ╦½ą▒Ž▀Ż¼ūó╩═Ę¹

#number sign; pound sign; hash Š«║┼

\backslash Ę┤ą▒Ž▀ū¬ęÕĘ¹

ĪŻfull stop;period Šõ║┼
,comma Č║║┼
:colon ├░║┼
;semicolon Ęų║┼
?question mark ╬╩║┼
!exclamationmark Š¬╠Š║┼
'apostrophe Ų▓║┼Īó╦∙ėąĖ±Ę¹║┼
-hyphen ┴¼ūų║┼
ŻŁdash ŲŲš█║┼

_underscore; understrikeŽ┬╗«Ž▀
...ellipsis ╩Ī┬į║┼

Ī«Ī»single quotation marks Ąźę²║┼
Ī░Ī▒double quotationmarks ╦½ę²║┼
Ī▒Ditto Sign ╚ń╔Ž╦∙╩÷
Ī¼parallel ╦½Ž▀║┼
Ī½swung dash ┤·ūų║┼
Īņsection sign; division ĘųĮ┌║┼
Ī·arrow ╝²║┼Ż╗▓╬╝¹║┼